Accueil > 02 - Livre Deux : SCIENCES > Le chaos déterministe > Cascades de structures dissipatives
Cascades de structures dissipatives
mercredi 4 juin 2008, par
Ilya Prigogine et Isabelle Stengers dans « La nouvelle alliance » :
« La thermodynamique des processus irréversibles a découvert que les flux qui traversent certains systèmes physico-chimiques et les éloignent de l’équilibre, peuvent nourrir des phénomènes d’auto-organisation spontanée, des ruptures de symétrie, des évolutions vers une complexité et une diversité croissantes. »
« On a découvert que quand vous allez loin de l’équilibre, par exemple, en considérant une réaction chimique, que vous empêchez d’arriver à l’équilibre, se produisent des phénomènes extraordinaires que personne n’aurait cru possibles ; par exemple, des horloges chimiques. Une horloge chimique, qu’est-ce que c’est ? Prenons un exemple : vous avez des molécules qui de rouges peuvent devenir bleues. Comment imaginez-vous voir ce phénomène ? Si vous pensez que les molécules vont au hasard, vous allez voir des flashes de bleu, puis de flashes de rouge. Mais il se produit, loin de l’équilibre, dans d’importantes classes de réactions chimiques, des phénomènes rythmiques. Tout devient bleu, puis tout devient rouge, puis tout devient bleu, c’est-à-dire qu’une cohérence naît, qui n’existe que loin de l’équilibre. (…) Donc, loin de l’équilibre, se produisent des phénomènes ordonnés qui n’existent pas près de l’équilibre. Si vous chauffez un liquide par en-dessous, il se produit des tourbillons dans lesquels des milliards de milliards de molécules se suivent l’une l’autre. De même, un être vivant, vous le savez bien, est un ensemble de rythmes, tels le rythme cardiaque, le rythme hormonal, le rythme des ondes cérébrales, de division cellulaire, etc. Tous ces rythmes ne sont possibles que parce que l’être vivant est loin de l’équilibre. Le non-équilibre, ce n’est pas du tout les tasses qui se cassent ; le non-équilibre, c’est la voie la plus extraordinaire que la nature ait inventée pour coordonner les phénomènes, pour rendre possibles des phénomènes complexes.
Donc, loin d’être simplement un effet du hasard, les phénomènes de non-équilibre sont notre accès vers la complexité. Et des concepts comme l’auto-organisation loin de l’équilibre, ou de structure dissipative, sont aujourd’hui des lieux communs qui sont appliqués dans des domaines nombreux, non seulement de la physique, mais de la sociologie, de l’économie, et jusqu’à l’anthropologie et la linguistique. »
Ilya Prigogine
dans "Temps à devenir"
Un exemple d’auto-organisation disspative : les cellules de Bénard de convection
Structures auto-organisées dans les systèmes loin de l’équilibre, le film
Structures dissipatives loin de l’équilibre
« Loin de l’équilibre, les processus irréversibles sont source de cohérence. L’apparition de cette activité cohérente de la matière – des « structures dissipatives » - nous impose un nouveau regard, une nouvelle manière de nous situer par rapport au système que nous définissons et manipulons. Alors qu’à l’équilibre et près de l’équilibre, le comportement du système est, pour des temps suffisamment longs, entièrement déterminé par les conditions aux limites, nous devrons désormais lui reconnaître une certaine autonomie qui permet de parler des structures loin de l’équilibre comme de phénomènes d’ « auto-organisation ». (…)
Un système physico-chimique peut donc devenir sensible, loin de l’équilibre, à des facteurs négligeables près de l’équilibre. (…) La notion de « sensibilité » lie ce que les physiciens avaient l’habitude de séparer : la définition du système et son activité. (…) C’est l’activité intrinsèque du système qui détermine comment nous devons décrire son rapport à l’environnement, qui engendre donc le type d’intelligibilité qui sera pertinente pour comprendre ses histoires possibles. (…) On retrouve la notion de sensibilité associée à celle d’instabilité, puisqu’il s’agit, dans ce cas, de la sensibilité du système à lui-même, aux fluctuations de sa propre activité. (…) Nous pouvons décrire un système à l’équilibre à partir des seules valeurs moyennes des grandeurs qui le caractérisent, parce que l’état d’équilibre est stable par rapport aux incessantes fluctuations qui perturbent ces valeurs, parce que ces fluctuations sont vouées à la régression. (…) Le fait que tel ou tel événement puisse « prendre sens », cesser d’être un simple bruit dans le tumulte insensé de l’activité microscopique, introduit en physique cet élément narratif dont nous avons dit qu’il était indispensable à une véritable conception de l’évolution. (…) ces questions ne renvoient ne renvoient pas à une ignorance contingente et surmontable, mais définissent la singularité des points de bifurcation. En ces points, le comportement du système devient instable et peut évoluer vers plusieurs régimes de fonctionnement stables. En de tels points, une « meilleure connaissance » ne nous permettrait pas de déduire ce qui arrivera, de substituer la certitude aux probabilités. (…) La physique des phénomènes loin de l’équilibre a démontré le rôle constructif des phénomènes irréversibles. Nous pouvons désormais affirmer que le message de l’entropie n’a pas pour objet les limites de nos connaissances, ou des impératifs pratiques. (…) Il définit les contraintes intrinsèques à partir desquelles se renouvellent le sens et la portée des questions que ce monde nous autorise à poser. (…)
Nous avons surtout souligné les dimensions négatives du chaos dynamique, la nécessité qu’il implique d’abandonner les notions de trajectoire et de déterminisme. Mais l’étude des systèmes chaotiques est également une ouverture ; elle crée la nécessité de construire de nouveaux concepts, de nouveaux langages théoriques. Le langage classique de la dynamique implique les notions de points et de trajectoires, et, jusqu’à présent, nous-mêmes y avons eu recours alors même que nous montrions l’idéalisation – dans ce cas illégitime – dont elles procèdent. Le problème est maintenant de transformer ce langage, de sorte qu’il intègre de manière rigoureuse et cohérente les contraintes que nous venons de reconnaître.
Il ne suffit pas, en effet, d’exprimer le caractère fini de la définition d’un système dynamique en décrivant l’état initial de ce système par une région de l’espace des phases, et non par un point. Car une telle région, soumise à l’évolution que définit la dynamique classique, aura beau se fragmenter au cours du temps, elle conservera son volume dans l’espace des phases. C’est ce qu’exprime un théorème général de la dynamique, le théorème de Liouville. Toutes les tentatives de construire une fonction entropie, décrivant l’évolution d’un ensemble de trajectoires dans l’espace des phases, se sont heurtées au théorème de Liouville, au fait que l’évolution d’un tel ensemble ne peut être décrite par une fonction qui croîtrait au cours du temps.
Or, un argument simple permet de montrer l’incompatibilité, dans le cas d’un système chaotique, entre le théorème de Liouville et la contrainte selon laquelle toute description définit le « pouvoir de résolution » de nos descriptions ; il existera toujours une distance r telle que nous ne pourrons faire de différence entre des points plus proches l’un de l’autre (…) La nouvelle description des systèmes dynamiques chaotiques substitue au point un ensemble correspondant à un fragment de fibre contractante. Il s’agit d’une description non locale, qui tient compte de la contrainte d’indiscernabilité que nous avons définie. Mais cette description n’est pas relative à notre ignorance. Elle donne un sens intrinsèque au caractère fini de nos descriptions : dans le cas où le système n’est pas chaotique, où l’exposant de Lyapounov est de valeur nulle, nous retrouvons la représentation classique, ponctuelle, et les limites mises à la précision de nos mesures n’affectent plus la représentation du système dynamique.
Cette nouvelle représentation brise également la symétrie temporelle. (…) Là où une seule équation d’évolution permettait de calculer l’évolution vers le passé ou vers le futur de points eux-mêmes indifférents à cette distinction, nous avons maintenant deux équations d’évolution différentes. L’une décrirait l’évolution d’un système vers un équilibre situé dans le futur, l’autre décrirait l’évolution d’un système vers un équilibre situé dans le passé.
L’un des grands problèmes de l’interprétation probabiliste de l’évolution vers l’équilibre était que la représentation probabiliste ne donne pas sens à la distinction entre passé et futur. (…) La nouvelle description dynamique que nous avons construite incorpore, en revanche, la flèche du temps (…) Les comportements dynamiques chaotiques permettent de construire ce pont, que Boltzmann n’avait pu créer, entre la dynamique et le monde des processus irréversibles. La nouvelle représentation de l’objet dynamique, non locale et à symétrie temporelle brisée, n’est pas une description approximative, plus pauvre que la représentation classique. Elle définit au contraire cette représentation classique comme relative à un cas particulier. (…) Nous savons aujourd’hui que ces derniers (les systèmes non-chaotiques), qui dominèrent si longtemps l’imagination des physiciens, forment en fait une classe très particulière. (…) C’est en 1892, avec la découverte d’un théorème fondamental par Poincaré ( la loi des trois corps), que se brisa l’image homogène du comportement dynamique : la plupart des systèmes dynamiques, à commencer par le simple système « à trois corps » ne sont pas intégrables.
Comment comprendre cet énoncé ? Depuis les travaux de Hamilton, on sait qu’un même système dynamique peut être représenté de différentes manières équivalentes par une transformation dite canonique (ou unitaire) (…) L’hamiltonien du système est la grandeur qui détermine son évolution temporelle.
Parmi toutes les transformations unitaires, il en existe une qui permet d’aboutir à une représentation privilégiée du système. C’est celle qui fait de l’énergie, c’est-à-dire de l’hamiltonien, une fonction des seuls moments, et non plus des positions. Dans une telle représentation, les mouvements des différentes particules du système sont décrits comme s’ils ne dépendaient plus des positions relatives des particules, c’est-à-dire comme si elles n’étaient plus en interaction. (…) Les mouvements possibles de tels systèmes ont donc la simplicité des mouvements libres. (…)
Or, en 1892, Poincaré montra qu’en général il est impossible de définir la transformation unitaire qui ferait des « actions » des invariants du système. La plupart des systèmes dynamiques n’admettent pas d’invariants en dehors de l’énergie et de la quantité de mouvement, et dès lors ne sont pas intégrables.
La raison de l’impossibilité de définir les invariants du mouvement qui correspondent à la représentation d’un système dynamique intégrable tient à un mécanisme de résonance. (…) Le mécanisme de résonance peut être caractérisé comme un transfert d’énergie entre deux mouvements périodiques couplés dont les fréquences sont entre elles dans un rapport simple.
Ce sont ces phénomènes de résonance – mais, cette fois, entre les différents degrés de liberté qui caractérisent un même système dynamique – qui empêchent que ce système soit mis sous une forme intégrable. La résonance la plus simple entre les fréquences se produit quand ces fréquences sont égales, mais elle se produit aussi à chaque fois que les fréquences sont commensurables, c’est-à-dire chaque fois qu’elles ont entre elles un rapport rationnel. Le problème se complique du fait que de manière générale les fréquences ne sont pas constantes. (…) Ce qui fait que, dans l’espace des phases d’un système dynamique, il y aura des points caractérisés par une résonance, alors que d’autres ne le seront pas. L’existence des points de résonance interdit en général la représentation en termes de variables cycliques, c’est-à-dire une décomposition du mouvement en mouvements périodiques indépendants.
Les points de résonance, c’est-à-dire les points auxquels les fréquences ont entre elles un rapport rationnel, sont rares, comme sont rares les nombres rationnels par rapport aux nombres irrationnels. Dès lors, presque partout dans l’espace des phases, nous aurons des comportements périodiques de type habituel. Néanmoins, les points de résonance existent dans tout le volume fini de l’espace des phases. D’où le caractère effroyablement compliqué de l’image des systèmes dynamiques telle qu’elle nous a été révélée par la dynamique moderne initiée par Poincaré et poursuivie par les travaux de Kolmogoroff, Arnold et Moser.
Si les systèmes dynamiques étaient intégrables, la dynamique ne pourrait nous livrer qu’une image statique du monde, image dont le mouvement du pendule ou de la planète sur sa trajectoire képlérienne constituerait le prototype. Cependant l’existence des résonances dans les systèmes dynamiques à plus de deux corps ne suffit pas pour transformer cette image et la rendre cohérente avec les processus évolutifs étudiés précédemment. Lorsque le volume reste petit, ce sont toujours les comportements périodiques qui dominent. (…)
Cependant, pour les grands systèmes, la situation s’inverse. Les résonances s’accumulent dans l’espace des phases, elles se produisent désormais non plus en tout point rationnel, mais en tout point réel. (…) Dès lors, les comportements non périodiques dominent, comme c’est le cas dans les systèmes chaotiques. (…)
Dans le cas d’un système de sphères dures en collision, Sinaï a pu démontrer l’identité entre comportement cinétique et chaotique, et définir la relation entre une grandeur cinétique comme le temps de relaxation (temps moyen entre deux collisions) et le temps de Lyapounov qui caractérise l’horizon temporel des systèmes chaotiques. (…)
Or, l’atome en interaction avec son champ constitue un « grand système quantique » auquel, nous l’avons démontré, le théorème de Poincaré peut être étendu. (…) La « catastrophe » de Poincaré se répète dans ce cas : contrairement à ce que présupposait la représentation quantique usuelle, les systèmes caractérisés par l’existence de telles résonances ne peuvent être décrits en termes de superposition de fonctions propres de l’opérateur hamiltonien, c’est-à-dire d’invariants du mouvement. Les systèmes quantiques caractérisés par des temps de vie moyens, ou par des comportements correspondants à des « collisions », constituent donc la forme quantique des systèmes dynamiques au comportement chaotique (…)
L’abandon du modèle des systèmes intégrables a des conséquences aussi radicales en mécanique quantique qu’en mécanique classique. Dans ce dernier cas, il impliquait l’abandon de la notion de point et de loi d’évolution réversible qui lui correspond. Dans le second, il implique l’abandon de la fonction d’onde et de son évolution réversible dans l’espace de Hilbert. Dans les deux cas, cet abandon a la même signification : il nous permet de déchiffrer le message de l’entropie. (…)
La collision, transfert de quantité de mouvement et d’énergie cinétique entre deux particules, constitue, du point de vue dynamique, un exemple de résonance. Or, c’est l’existence des points de résonance qui, on le sait depuis Poincaré, empêche de définir la plupart des systèmes dynamiques comme intégrables. La théorie cinétique, qui correspond au cas d’un grand système dynamique ayant des points de résonance « presque partout » dans l’espace des phases , marque donc la transformation de la notion de résonance : celle-ci cesse d’être un obstacle à la description en termes de trajectoires déterministes et prédictibles, pour devenir un nouveau principe de description, intrinsèquement irréversible et probabiliste.
C’est cette notion de résonance que nous avons retrouvée au cœur de la mécanique quantique, puisque c’est elle qu’utilisa Dirac pour expliquer les événements qui ouvrent un accès expérimental à l’atome, l’émission et l’absorption de photons d’énergie spécifique, dont le spectre constitue la véritable signature de chaque type d’atome. (…) Le temps de vie, qui caractérise de manière intrinsèque un niveau excité, dépend, dans le formalisme actuel de la mécanique quantique, d’une approximation et perd son sens si le calcul est poussé plus loin. Dès lors, la mécanique quantique a dû reconnaître l’événement sans pouvoir lui donner de sens objectif. C’est pourquoi elle a pu paraître mettre en question la réalité même du monde observable qu’elle devait rendre intelligible. (…)
Pour expliquer les transitions électroniques spontanées qui confèrent à tout état excité un temps de vie fini, Dirac avait dû faire l’hypothèse d’un champ induit par l’atome et entrant en résonance avec lui. Le système fini que représente l’atome isolé n’est donc qu’une abstraction. L’atome en interaction avec son champ est, lui, un « grand système quantique », et c’est à son niveau que se produit la « catastrophe de Poincaré ».
L’atome en interaction avec le champ qu’il induit ne constitue pas, en effet, un système intégrable et ne peut donc pas plus être représenté par l’évolution de fonction d’onde qu’un système classique caractérisé par des points de résonance ne peut être caractérisé par une trajectoire. C’est là la faille que recélait l’édifice impressionnant de la mécanique quantique. (…) Il est significatif que, partout, nous ayons rencontré la notion de « brisement de symétrie ». Cette notion implique une référence apparemment indépassable à la symétrie affirmée par les lois fondamentales qui constituent l’héritage de la physique. Et, en effet, dans un premier temps, ce sont ces lois qui ont guidé notre recherche. (…) La description à symétrie temporelle brisée permet de comprendre la symétrie elle-même comme relative à la particularité des objets autrefois privilégiés par la physique, c’est-à-dire de situer leur particularité au sein d’une théorie plus générale. »
Extrait de « Le temps et l’éternité » d’Ilya Prigogine et Isabelle Stengers
Site : Matière et révolution
Pour nous écrire, cliquez sur Répondre à cet article
Lire également sur le site Matière et Révolution :
Chaos déterministe (dynamique non-linéaire) et dialectique - en anglais -
La dynamique chaotique de la géophysique et de la climatologie.
Climatologie et chaos déterministe.
Le cœur et le chaos déterministe
Le cerveau et le chaos déterministe
Psychanalyse et chaos déterministe
Chaos cardiaque, cérébral et cellulaire : les rythmes émergents du vivant
Qu’est-ce que le chaos déterministe en sciences ?
Lire à l’extérieur du site :
James Gleick expose le chaos déterministe
« On a découvert que quand vous allez loin de l’équilibre, par exemple, en considérant une réaction chimique, que vous empêchez d’arriver à l’équilibre, se produisent des phénomènes extraordinaires que personne n’aurait cru possibles ; par exemple, des horloges chimiques. Une horloge chimique, qu’est-ce que c’est ? Prenons un exemple : vous avez des molécules qui de rouges peuvent devenir bleues. Comment imaginez-vous voir ce phénomène ? Si vous pensez que les molécules vont au hasard, vous allez voir des flashes de bleu, puis de flashes de rouge. Mais il se produit, loin de l’équilibre, dans d’importantes classes de réactions chimiques, des phénomènes rythmiques. Tout devient bleu, puis tout devient rouge, puis tout devient bleu, c’est-à-dire qu’une cohérence naît, qui n’existe que loin de l’équilibre. (…) Donc, loin de l’équilibre, se produisent des phénomènes ordonnés qui n’existent pas près de l’équilibre. Si vous chauffez un liquide par en-dessous, il se produit des tourbillons dans lesquels des milliards de milliards de molécules se suivent l’une l’autre. De même, un être vivant, vous le savez bien, est un ensemble de rythmes, tels le rythme cardiaque, le rythme hormonal, le rythme des ondes cérébrales, de division cellulaire, etc. Tous ces rythmes ne sont possibles que parce que l’être vivant est loin de l’équilibre. Le non-équilibre, ce n’est pas du tout les tasses qui se cassent ; le non-équilibre, c’est la voie la plus extraordinaire que la nature ait inventée pour coordonner les phénomènes, pour rendre possibles des phénomènes complexes.
Donc, loin d’être simplement un effet du hasard, les phénomènes de non-équilibre sont notre accès vers la complexité. Et des concepts comme l’auto-organisation loin de l’équilibre, ou de structure dissipative, sont aujourd’hui des lieux communs qui sont appliqués dans des domaines nombreux, non seulement de la physique, mais de la sociologie, de l’économie, et jusqu’à l’anthropologie et la linguistique. »
Ilya Prigogine dans « Temps à devenir »
Sur les structures dissipatives de Prigogine, cliquez
Sur les cascades de structures dissipatives, cliquez
MOTS CLEFS :
dialectique –
discontinuité – fractales -
physique quantique – relativité –
chaos déterministe – atome –
système dynamique – structures dissipatives – percolation – irréversibilité –
non-linéarité – quanta –
émergence –
inhibition –
boucle de rétroaction – rupture de symétrie - turbulence – mouvement brownien –
le temps -
contradictions –
crise –
transition de phase – criticalité - attracteur étrange – résonance – psychanalyse -
auto-organisation – vide - révolution permanente - Zénon d’Elée - Antiquité -
Blanqui -
Lénine -
Trotsky – Rosa Luxemburg –
Prigogine -
Barta -
Gould - marxisme - Marx - la révolution - l’anarchisme - le stalinisme - Socrate - socialisme - religion
SITE :
MATIERE ET REVOLUTION
Messages
1. Cascades de structures dissipatives, 27 novembre 2009, 18:42, par Robert Paris
L’état d’équilibre peut-être défini comme un exemple particulier d’état stationnaire, c’est-à-dire d’état dont l’entropie ne varie pas au cours du temps. (...)
Pour définir un système à l’équilibre, on peut négliger le fait qu’il se trouve dans le champ gravitationnel terrestre, mais cette approximation n’est plus possible loin de l’équilibre. (...)
Un système physico-chimique peut donc devenir sensible, loin de l’équilibre, à des facteurs négligeables près de l’équilibre. (...)
Les états d’équilibre sont caractérisés par le fait qu’il existe toujours une représentation, un choix d’unités (les modes d’excitation pour le cristal, les molécules pour le gaz) tel que le comportement de ces unités soit incohérent.
Un milieu loin de l’équilibre, comme celui qui est le siège des tourbillons de Bénard, est caractérisé en revanche par des corrélations intrinsèques à longue portée. Les tourbillons sont un exemple de la cohérence que traduisent ces corrélations : les molécules prises dans un tourbillon ne peuvent plus être définies comme des unités indépendantes les unes les autres. (...)
Loin de l’équilibre, les processus irréversibles sont donc source de cohérence. (...)
L’état stationnaire correspond en effet à l’activité minimale compatible avec la contrainte qui maintient le système hors de l’équilibre (théorème de production d’entropie minimum). (...)
Ces questions ne renvoient pas à une ignorance contingente et surmontable, mais définissent la singularité des points de bifurcation. En ces points, le comportement du système devient instable et peut évoluer vers plusieurs régimes de fonctionnement stables. (...)
Il pourra notamment atteindre un régime chaotique où son activité peut être définie comme l’inverse du désordre indifférent qui règne à l’équilibre : aucune stabilité n’assure plus la pertinence d’une description macroscopique, tous les possibles s’actualisent, coexistent et interfèrent, le système est "en même temps" tout ce qu’il peut être.
Prigogine et Stengers