English German Espagnol Portugese Chinese Japanese Arab Rusian Italian Norvegian Dutch Hebrew Polish Turkish Hindi
Accueil du site > 02 - Livre Deux : SCIENCES > Atome : lois de la Physique ou rétroaction de la matière/lumière et du vide (...) > Comment la physique se prépare à une nouvelle révolution conceptuelle (...)

Comment la physique se prépare à une nouvelle révolution conceptuelle fondamentale

jeudi 17 septembre 2015, par Robert Paris

« La subtilité de la nature est plusieurs fois supérieure à celle des sens et de l’entendement. »

Francis Bacon

« Nous avons peut-être besoin d’imagination plus que d’investissement en matériel. »

David Ritz Finkelstein, dans « Le vide »

« L’objectif des sciences naturelles est l’étude de la nature, des nombreux objets et processus, des lois qui les gouvernent. »

V. Ginzburg, « Sur la physique et l’astrophysique »

« La science ne concerne pas le statu quo mais la révolution. »

Léon Lederman dans « Si l’Univers est la réponse, quelle est la question ? » Il convient de remarquer que les ouvrages précédents défendent des points de vue parfois convergents mais souvent en débat les uns avec les autres...

Comment la physique se prépare à une nouvelle révolution conceptuelle fondamentale

Comme on le sait, la physique a connu plusieurs grandes révolutions de ses concepts fondamentaux. Ces révolutions sont attachées à des noms célèbres : Anaximandre, Anaxagore, Démocrite, Parménide, Zénon, Epicure, Lucrèce, Bacon, Bruno, Galilée, Kepler, Newton, Faraday, Hertz, Maxwell, Poincaré, Lorentz, Planck, Einstein, Bohr, Heisenberg, de Broglie, Schrödinger, Pauli, Fermi, Feynman et bien d’autres…

A nouveau aujourd’hui, plusieurs savants estiment que la physique est au bord d’une nouvelle révolution dont nous allons essayer de faire mesurer l’ampleur, le but et la direction des recherches.

Si l’école de Copenhague de la physique (Bohr, Heisenberg, Born, Jordan, von Neuman, Dirac, Pauli, Fermi, Wigner, Weisskopf, Oppenheimer,…) avait donné le « la » en physique pendant de longues années, affirmant qu’on ne pourra jamais que calculer à partir des expériences sans pouvoir dire ce qui se passe dans la matière ni s’interroger là-dessus, il semble bien que cette affirmation péremptoire doive bientôt être battue en brèche et que l’on va pouvoir, à partir des quanta du vide, particules, antiparticules et bosons virtuels, décrire « ce qui se passe quand… ». On se souvient que la physique dite classique reposait sur de telles descriptions. Mais la découverte du niveau quantique a amené la découverte du quanta, l’impossibilité de descendre en dessous d’un quanta et, du coup, les inégalités d’Heisenberg et l’impossibilité décrétée par Bohr de faire autre chose qu’étudier des expériences, c’est-à-dire des interactions entre le niveau classique (macroscopique) et le niveau quantique (par exemple celui des particules). Cela semblait opposer un mur naturel à la connaissance. L’étude du vide quantique semble devoir donner tort à ce renoncement à la connaissance car nos théories du vide pourraient bien donner une description du niveau quantique sans faire appel au niveau classique, tout en unifiant toute la physique, du niveau le plus grand au niveau le plus petit. Elle pourrait expliquer aussi bien la dualité onde/corpuscule (par exemple dans l’expérience des fentes de Young) que le principe de Pauli (qui empêche la matière de se concentrer) ou la loi des bosons (comme le photon lumineux) qui les amène à se grouper et les empêche d’interagir entre eux. Le vide quantique y est appelé à apparaître pour ce qu’il est : le véritable fondement matériel et unitaire du monde, qui construit aussi bien la matière, que la lumière ainsi que l’espace et le temps. Le vide devrait être le fondement aussi bien de la gravitation que des autres forces, devenant ainsi le principe général unificateur, puisqu’il est source aussi bien des masses, des charges, des interactions, des énergies.

Le point de vue de Sheldon Glashow, dans « Le charme de la Physique » :

« La seule question qui m’ait toujours fasciné, qui a occupé l’esprit d’une génération de savants… c’est, suivant l’inimitable manière des scientifiques : « Qu’est-ce que tout ça veut dire ? »….Les questions les plus difficiles restent posées. Comment les étoiles se groupent-elles en galaxies, elles-mêmes rassemblées en amas et même en amas d’amas, le tout entourant d’immenses sphères de vide réparties comme des bulles de savon au fond d’un évier ? Nous ne savons pas ce qui constitue la véritable matière de l’univers, car les étoiles, la poussière et les nuages de gaz ne suffisent pas à rendre compte à eux seuls de sa masse. L’essentiel de la matière est invisible à nos yeux même si nous en connaissons les effets gravitationnels… Nous ne savons pas pourquoi les particules existent, pourquoi elles ont une masse donnée, ni pourquoi elles sont soumises à certaines forces. Notre modèle standard est honnête : il nous dit que, dans ce contexte, il n’existe pas de réponse. Plus encore, notre « théorie de complète unification » n’est ni complète (la durée de vie du proton est fausse), ni unifiée (la gravitation est laissée de côté), ni même vraiment une théorie (elle ne résout aucun des problèmes exposés plus haut). La théorie des champs quantiques, qui est issue du mariage de la mécanique et de la relativité, telle qu’elle a été définie par Dirac, Schwinger, Feynman, Tomonaga et d’autres, nous a bien servi pendant plus de quarante ans, nous aidant à établir notre modèle standard de la physique des particules. Mais elle est aujourd’hui dans une impasse : cette théorie est tout simplement incapable de décrire la gravitation, et donc d’expliquer les premiers instants de la création de l’univers. Elle ne parvient pas d’autre part à répondre à aucune des questions qui se posent aujourd’hui en physique des particules. Manifestement, il nous faut effectuer un pas de géant vers un cadre conceptuel beaucoup plus puissant. La théorie des supercordes est une tentative ambitieuse, et en vogue, de surmonter tous ces obstacles en supposant que les particules élémentaires sont en fait de minuscules boucles de corde, plutôt que des structures ponctuelles… Pour l’instant, la théorie des supercordes n’offre même pas un début de réponse à une question du type : « Qui a besoin du muon ? », mais cela n’a pas empêché toute une génération de brillants jeunes chercheurs de s’embourber dans les calculs les plus inextricables des espaces mathématiques à dix dimensions. Lors du colloque de 1989 de l’université d’été internationale de physique infranucléaire d’Erice, son fondateur et directeur Antonio Zichichi demandait à l’un des conférenciers, parmi les plus jeunes et les plus abstraits : « Existe-t-il une expérience, même imaginaire, qui pourrait permettre de prouver ce que vous avancez ? » La réponse fut négative… Nous tentons d’appréhender la naissance, l’évolution et le destin de notre Univers. Nous voulons savoir pourquoi les choses doivent être exactement ce qu’elles sont. Nous voulons dévoiler la profonde simplicité de la Nature, car il est dans la nature des physiciens des particules (et de quelques autres) d’avoir foi dans la simplicité, et de croire contre toute raison qu’en fait les lois fondamentales de la physique, de la Nature ou de la réalité sont tout à fait élémentaires et compréhensibles. »

Le point de vue de Lee Smolin, dans « Rien ne va plus en physique ! » : »

« Einstein est mort à la fin du quart de siècle, en 1955. Dans la même année, nous avions appris comment assembler de manière cohérente la théorie quantique et la théorie de la relativité restreinte ; telle a été la grande contribution de Freeman Dyson et de Richard Feynman. Nous avions découvert le neutron, le neutrino et des centaines d’autres particules apparemment élémentaires. Nous avions également compris que les myriades de phénomènes naturels sont régis seulement par quatre forces : l’électromagnétisme, la gravité, les interactions nucléaires fortes (qui tiennent ensemble les noyaux atomiques) et les interactions nucléaires faibles (responsables de la désintégration radioactive). Un quart de siècle nous conduit jusqu’à 1980. A cette date, nous avions élaboré la théorie expliquant les résultats de toutes les expériences menées jusqu’à ce jour avec les particules élémentaires : à cette théorie, on a donné le nom de « modèle standard de la physique des particules élémentaires ». Pour prendre un exemple, le modèle standard a prédit, avec précision, la manière dont les protons et les neutrons sont constitués de quarks, et que ces derniers se tiennent ensemble grâce aux gluons, c’est-à-dire grâce aux porteurs des interactions nucléaires fortes. Pour la première fois dans l’histoire de la physique fondamentale, la théorie a rattrapé l’expérimentation. Depuis, personne n’a réalisé une expérience qui ne soit pas compatible avec le modèle standard ou avec la relativité générale. Sur le chemin de l’infiniment petit à l’infiniment grand, notre connaissance de la physique s’étend aujourd’hui à la nouvelle science de la cosmologie, dont la théorie du Big Bang est devenue un point consensuel… C’est ainsi qu’en 1981, la physique pouvait se réjouir de deux cent ans de croissance explosive. Chacune de ses découvertes, suivie d’une autre et encore d’une autre, a approfondi notre compréhension de la nature, puisque, dans chaque cas, la théorie et l’expérience se sont enrichies mutuellement. Les idées nouvelles ont été testées et confirmées, et on a toujours pu donner une explication théorique aux découvertes expérimentales nouvelles. Et puis, au début des années 1980, tout s’est arrêté… Il faut néanmoins admettre que deux découvertes expérimentales ont été faites ces dernières décennies : d’une part les neutrinos ont une masse et d’autre part l’univers est dominé par la mystérieuse matière noire et semble être en expansion accélérée. Mais nous n’avons aucune idée de la cause de la masse des neutrinos (ou de tout autre particule) et nous ne savons pas expliquer son apparition. Quant à la matière noire, elle ne s’explique avec aucune des théories physiques existantes. Sa découverte ne peut donc pas être considérée comme une réussit, puisqu’elle suggère qu’un fait majeur nous échappe. Et, excepté la matière noire, aucune particule nouvelle n’a été découverte, aucune nouvelle force n’a été trouvée, aucun phénomène nouveau n’a été rencontré que nous ne connaissions et n’appréhendions déjà il y a vingt-cinq ans…. Au cours des trois dernières décennies, les théoriciens ont proposé au moins une douzaine d’approches nouvelles. Chacune a été motivée par une hypothèse qui paraissait plausible, mais aucune n’a finalement eu de succès. Dans le domaine de la physique des particules, parmi ces approches nouvelles, se trouvent la technicouleur, les modèles de préons et la supersymétrie. Dans le domaine des théories de l’espace-temps, on trouve la théorie des twisteurs, les ensembles causaux, la supergravité, les triangulations dynamiques et la gravitation quantique à boucles… Une théorie particulière a attiré plus que toute les autres : il s’agit de la théorie des cordes. Les raisons ne sont pas difficiles à comprendre. Elle prétend expliquer correctement à la fois le très grand et le très petit : la gravité et les particules élémentaires – et pour atteindre ce but, elle fait l’hypothèse la plus audacieuse de toutes les théories : elle postule que le monde contient des dimensions non encore observées et beaucoup plus de particules que nous n’en connaissons aujourd’hui. En même temps, la théorie des cordes affirme que toutes les particules élémentaires apparaissent comme les vibrations d’une seule entité, une corde, qui obéit à des lois simples et élégantes. (…) Une partie des raisons pour lesquelles la théorie des cordes ne produit pas de prédictions nouvelles est qu’elle se décline elle-même dans un nombre infini de versions… Les théories des cordes que l’on ne sait pas étudier existent en un nombre tellement grand qu’aucune expérience concevable ne pourra jamais les contredire toutes… Jamais cette théorie n’a été couchée sur le papier. Nous ne savons pas quels sont ses principes fondamentaux… Gerard t’Hoof, prix Nobel pour son travail en physique des particules élémentaires, a ainsi défini l’état de la théorie des cordes : « En fait, je ne serai même pas prêt à appeler la théorie des cordes une théorie, mais je dirai plutôt un modèle ; ou même pas cela : juste un pressentiment. » (…) Comment est-il possible que la théorie des cordes, développée par plus d’un millier des plus brillants chercheurs qui ont travaillé dans les meilleures conditions, soit maintenant sur le point de s’effondrer ? (…) Ce qui est sur le point de s’effondrer n’est pas vraiment une théorie particulière, c’est plutôt un style, une façon de pratiquer la science (…) Cette façon est pragmatique et demande qu’on garde la tête froide, car elle favorise la virtuosité de calcul plus que la réflexion sur des problèmes conceptuels difficiles. Cela est très différent de la manière dont Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger et les autres révolutionnaires du début du XXe siècle faisaient de la science. Leurs réussites venaient d’une réflexion approfondie sur les questions les plus fondamentales concernant l’espace, le temps et la matière. Ils considéraient ce qu’ils étaient en train de faire comme partie intégrante d’une tradition philosophique plus générale, avec laquelle ils se sentaient à l’aise… Dès l’origine de la science physique, il y eut des hommes qui crurent appartenir à la dernière génération pour laquelle l’inconnu existait encore. La physique a toujours semblé quasiment achevée à ceux qui l’ont pratiquée. Cette autosatisfaction n’a été battue en brèche qu’au moment des révolutions, lorsque des hommes honnêtes devaient admettre qu’ils ne connaissaient pas les choses les plus fondamentales… La révolution actuelle a commencé en 1900 avec la découverte par Max Planck de la formule qui décrit la distribution d’énergie dans le spectre de la radiation thermique et qui eut pour conséquence de prouver que l’énergie n’est pas continue, mais quantifiée. Cette révolution doit arriver à sa conclusion. Les problèmes que les physiciens doivent résoudre aujourd’hui sont, en grande partie, des questions qui restent sans réponse, parce que la révolution scientifique du XXe siècle reste inachevée. Au cœur de notre échec à conclure la révolution scientifique actuelle se trouvent cinq problèmes, dont la solution nous échappe… Selon la théorie générale de la relativité d’Einstein, l’espace et le temps ne constituent plus un fond fixe et absolu. L’espace est aussi dynamique que la matière ; il bouge, il change de forme… Ces deux découvertes, la relativité et la quantique, nous ont, chacune, demandé de rompre définitivement avec la physique de Newton. Pourtant, malgré ce très grand progrès accompli au cours du siècle dernier, ces deux découvertes restent incomplètes. Chacune d’elles possède des faiblesses et des défauts, qui tendent à prouver l’existence d’une théorie plus fondamentale. Mais la raison la plus évidente pour laquelle chacune des deux théories est incomplète est l’existence de l’autre. Notre esprit nous incite à chercher une troisième théorie, qui unirait toute la physique, et la raison à l’origine de cette incitation est simple. Il est évident que la nature, elle, est « unifiée ». L’univers dans lequel nous nous trouvons est interconnecté, dans le sens où tout interagit avec tout le reste. Il ne peut pas y avoir de solution où nous aurions deux théories de la nature, qui décriraient des phénomènes différents, comme si l’une n’avait rien à voir avec l’autre. Toute prétendante au sacre de théorie ultime ne peut être qu’une théorie complète de la nature. Elle doit inclure l’ensemble de notre connaissance. La physique a survécu pendant longtemps sans cette théorie unifiée, parce que, en ce qui concerne l’expérience, nous avons toujours été capables de diviser le monde en deux royaumes. Dans le royaume atomique, où règne la physique quantique, on peut le plus souvent ignorer la gravité. On peut traiter l’espace et le temps comme le faisait Newton : en tant que fond invariant. L’autre royaume est celui de la gravitation et de la cosmologie. Dans ce monde, on peut souvent ignorer les phénomènes quantiques. Mais cette division ne peut être qu’une solution provisoire. La dépasser est le premier grand problème non résolu de la physique théorique…. La mécanique quantique, au moins dans la forme sous laquelle elle a été initialement proposée, n’était à l’aise avec le réalisme, parce qu’elle présupposait une partition de la nature en deux parties. D’un côté se trouve le système à observer. Nous, les observateurs, sommes de l’autre côté. De notre côté, se trouvent aussi les instruments que nous utilisons pour préparer les expériences et faire les mesures et les horloges qui enregistrent les instants où les événements ont lieu. On peut décrire la théorie quantique comme un nouveau langage dans notre dialogue avec les systèmes que nous étudions à l’aide de nos instruments. Ce langage quantique contient des verbes, qui se réfèrent à nos préparations et à nos mesures, et des noms qui se réfèrent à ce que nous observons à la suite de ces préparations. Il ne nous dit rien sur ce que serait le monde si nous en étions absents. Dès la création de la théorie quantique, un débat a fait rage entre ceux qui acceptaient cette façon de faire de la science et ceux qui la rejetaient. Beaucoup parmi les fondateurs de la physique quantique, y compris Albert Einstein, Erwin Schrödinger et Louis de Broglie, répugnaient à cette approche. C’étaient des réalistes. Quelle que soit l’efficacité de la théorie quantique, pour eux, elle est restée incomplète, parce qu’elle ne pouvait pas fournir une image de la réalité, en notre absence. De l’autre côté, se sont trouvés Niels Bohr, Werner Heisenberg et plusieurs autres. Au lieu d’en être scandalisés, ils ont accueilli à bras ouverts cette nouvelle façon de faire de la science. Depuis, les réalistes ont marqué quelques points en mettant en évidence des incohérences dans la formulation actuelle de la théorie. Certaines de ces apparentes incohérences surgissent grâce au fait que, si elle est universelle, la théorie quantique doit également s’appliquer à « nous ». Les problèmes viennent alors de la division du monde, nécessaire pour donner un sens à la théorie quantique. En particulier, une difficulté consiste à savoir où l’on met la ligne de division, celle-ci étant dépendante de celui qui fait l’observation… Toute cette thématique est connue sous le nom de « problème des fondements de la mécanique quantique ». C’est le deuxième grand problème de la physique contemporaine… Je dois avouer que je suis un réaliste. Je me place du côté d’Einstein et des autres, qui croient que la mécanique quantique est une description incomplète de la réalité. Mais alors, où devons-nous chercher ce qui manque à la mécanique quantique ? Il m’a toujours semblé clair que la solution demandera bien plus qu’une compréhension plus approfondie de la mécanique quantique elle-même… Il reste deux forces fondamentales dans la nature (dont nous connaissons l’existence) qui échappent à l’unification avec les champs électromagnétique et faible. Ce sont la gravité et les interactions nucléaires fortes (qui tiennent ensemble les particules appelées quarks et qui sont ainsi responsables de la formation des protons et des neutrons constituant le noyau atomique). Ces quatre forces peuvent-elles être unifiées ? C’est notre troisième grand problème. J’appellerai ce problème : « problème d’unification des particules et des forces », pour le distinguer de l’unification des lois dont nous avons parlé plus haut… Malgré son efficacité, le modèle standard se trouve confronté à un grand problème : il contient une longue liste de constantes à ajuster. Lorsqu’on énonce les lois de la théorie, on doit spécifier les valeurs de ces constantes. Ces valeurs pourraient être n’importe lesquelles, car la théorie reste mathématiquement cohérente quelles que soient les valeurs choisies. Celles-ci spécifient les propriétés des particules. Certaines nous fournissent les masses des quarks et des leptons, tandis que d’autres donnent les intensités des forces. Nous n’avons aucune idée de l’origine de ces nombres ; tout ce que nous avons à faire, c’est de les déterminer au début des expériences et de les insérer ensuite dans la théorie… Il existe environ vingt constantes de ce type, et la présence d’autant de paramètres libres dans ce que l’on suppose être la théorie fondamentale cause un grand embarras. Chacune de ces constantes représente un fait capital que nous ignorons : une cause ou un mécanisme physique responsable de la valeur observée de cette constante. C’est notre quatrième grand problème…. Ces dernières années, les astronomes ont réalisé une expérience très simple, au cours de laquelle ils ont mesuré la distribution des masses dans une galaxie de deux façons différentes et ont comparé les résultats. Premièrement, les astronomes ont mesuré la masse en observant les vitesses orbitales des étoiles ; deuxièmement, ils ont fait une mesure plus directe de la masse en comptant les étoiles, le gaz et la poussière qu’ils voyaient dans la galaxie… Or les deux mesures ne sont pas d’accord…. Et la divergence entre les deux valeurs est loin d’être petite, mais plutôt de l’ordre d’un facteur dix. De plus, l’erreur va toujours dans le même sens : on a toujours besoin de plus de masse pour expliquer le mouvement observé des étoiles que ce que l’on calcule par comptage direct de toutes les étoiles, du gaz et de la poussière… On appelle cette mystérieuse matière manquante « matière noire »… Puis les choses sont devenues encore plus mystérieuses. Récemment, on a découvert que selon des observations à des échelles encore plus grandes, qui correspondent à des milliards d’années-lumière, les équations de la relativité générale ne sont pas satisfaisantes même en rajoutant la matière noire. L’expansion de l’univers, démarrée avec le Big Bang il y a quelque 13,7 milliards d’années, s’accélère, tandis que, si l’on tient compte de toute la matière observée, plus la quantité calculée de la matière noire, l’univers devrait au contraire ralentir… Les mystères cosmologiques sont à la source du cinquième grand problème… L’idée qui présidait à la grande unification était non seulement de mettre ensemble toutes les forces, mais aussi d’inventer une symétrie qui pourrait transformer les quarks (particules régies par les interactions fortes) en leptons (les particules régies par les interactions électrofaibles) et, par conséquent, d’unifier deux principaux types de particules, en en faisant un seul type de particules et un seul champ de jauge. Le candidat le plus simple pour cette grande unification était connu sous le nom de symétrie SU(5)… La décomposition du quark en électrons et neutrinos a des conséquences visibles. Un proton contenant ce quark n’est plus un proton ; il se décompose en particules plus simples. Ainsi, les protons ne seraient plus des particules stables – ils seraient assujettis à une espèce de décomposition radioactive… Bien que cet effet soit extrêmement rare, il est réalisable expérimentalement, puisque le nombre de protons dans le monde est énorme… Le monde scientifique attendait les résultats avec impatience. Vingt-cinq ans plus tard, il les attend toujours. Aucun proton ne s’est décomposé. Nous avons attendu déjà assez longtemps pour nous assurer que la grande unification SU(5) est fausse. C’est une belle idée, mais une de celles que la nature n’a pas voulu réaliser… Il y a une différence énorme entre les puissances des différentes forces. La répulsion électrique entre deux protons est plus forte que leur attraction gravitationnelle par un facteur énorme, de l’ordre de dix puissance trente-huit. Il existe également de grosses différences entre les masses des particules. Par exemple, la masse de l’électron représente 1800 fois moins que la masse du proton… Pourquoi la nature est-elle à ce point hiérarchisée ? Pourquoi la différence entre le plus faible et le plus fort est-elle si grande ? Pourquoi les masses du proton et de l’électron sont-elles si minuscules comparées à la masse de Planck ou à l’échelle de l’unification ? On évoque habituellement ce problème en tant que « problème de la hiérarchie »… Le problème de la hiérarchie contient deux défis. Le premier est de trouver ce qui détermine les valeurs des constantes et ce qui fait que les rapports entre elles sont si grands. Le second est de comprendre pourquoi ces valeurs restent là où elles sont. Leur stabilité est étonnante et presque miraculeuse, puisque la mécanique quantique a une étrange tendance à tirer toutes les masses vers la masse de Planck… La leçon principale de la relativité générale est que la géométrie de l’espace n’est pas fixe. Elle évolue de façon dynamique, en se modifiant dans le temps lorsque la matière se déplace. Il existe même des ondes – les ondes gravitationnelles – qui voyagent à travers la géométrie de l’espace… Cela signifie que les lois de la nature doivent s’exprimer sous une forme qui ne présuppose pas que l’espace ait une géométrie fixe. C’est le cœur de la leçon einsteinienne. Cette forme se traduit en un principe, déjà décrit plus haut, celui d’ « indépendance par rapport au fond ». Ce principe énonce que les lois de la nature peuvent être décrites dans leur totalité sans présupposer la géométrie de l’espace… L’espace et le temps émergent de ces lois plutôt que de faire partie de la scène où se joue le spectacle. Un autre aspect de l’indépendance par rapport au fond est qu’il n’existe pas de temps privilégié. La relativité générale décrit l’histoire du monde au niveau fondamental en termes d’événements et de relations entre eux. Les relations les plus importantes concernent la causalité : un événement peut se trouver dans une chaîne causale qui mène à un autre événement. De ce point de vue, l’espace est un concept secondaire, totalement dépendant de la notion de temps. Prenons une horloge. Nous pouvons penser à tous les événements qui se déroulent simultanément lorsqu’elle sonne midi. Ce sont lesdits événements qui constituent l’espace… La question fondamentale pour la théorie quantique de la gravitation est, par conséquent, celle-ci : peut-on étendre à la théorie quantique le principe selon lequel l’espace n’a pas de géométrie fixe ? C’est-à-dire peut-on faire de la théorie quantique indépendante du fond, au moins en ce qui concerne la géométrie de l’espace ? Si la réponse est oui, on aura alors automatiquement trouvé la façon de fusionner la gravité et la théorie quantique, car celle-ci a déjà été interprétée comme étant un aspect de la géométrie dynamique de l’espace-temps… La première thèse de doctorat jamais écrite sur le problème de la gravité quantique a été, selon toute vraisemblance, la dissertation soutenue en 1935 par le physicien russe Matveï Petrovitch Bronstein. Ceux qui l’ont connu se souviennent de lui comme de l’un des physiciens soviétiques les plus brillants de sa génération. En 1936, il a écrit dans un article que « l’élimination des inconsistances logiques demande qu’on rejette nos concepts d’espace et de temps ordinaires, en les remplaçant par des concepts plus profonds et moins évidents »… Aujourd’hui, presque tous ceux qui réfléchissent sérieusement au problème de la gravité quantique sont d’accord avec Bronstein ; mais cela a pris soixante-dix ans… Un an après la publication par Bronstein de l’article que je viens de citer, il a été arrêté par le NKVD et fusillé le 18 février 1938… Le travail de Bronstein a été oublié, et la plupart des physiciens sont retournés à l’étude de la théorie quantique des champs… Deux camps se sont formés, en opposition l’un à l’autre. L’un d’eux suivit Bronstein en prenant au sérieux l’idée de l’indépendance par rapport au fond. L’autre l’a ignorée et choisit le chemin d’Heisenberg et de Pauli, en essayant d’appliquer la théorie quantique aux ondes gravitationnelles, considérées comme se déplaçant sur un fond fixe… Les approches les plus réussies, à ce jour, de la gravité quantique utilisent la combinaison de trois idées fondamentales : que l’espace-temps est « émergent », que la description la plus fondamentale est « discrète » et que cette description fait intervenir la « causalité » de façon cruciale… A ce jour, il est devenu clair qu’on ne pourra résoudre les cinq grands problèmes qu’à condition de réfléchir véritablement sur les fondements de notre compréhension de l’espace, du temps et du monde quantique, et de ne plus considérer les programmes de recherche vieux de dizaines d’années telles la théorie des cordes et la gravité quantique à boucles comme des paradigmes établis. On a besoin de jeunes chercheurs, ayant le courage, l’imagination et la profondeur conceptuelle pour initier des directions nouvelles. Comment peut-on trouver et soutenir ce type de scientifiques, au lieu de les décourager comme on l’a fait jusqu’à ce jour ? (…) Notre mission doit être de chercher les faux présupposés, de poser des questions nouvelles, de trouver des réponses nouvelles et d’être à la hauteur de la révolution… »

Le point de vue de Robert B. Laughlin, dans « Un univers différent »

« La fiabilité des rapports de cause à effet dans le monde naturel nous apprend quelque chose sur nous-mêmes, car elle est due à des principes d’organisation, pas à des règles au niveau microscopique. Autrement dit, les lois de la nature qui sont importantes pour nous émergent par un processus collectif d’auto-organisation (…) Contrairement à ce que l’on pensait, ce n’est pas les lois qui produisent les principes d’organisation, mais l’inverse. Cela nécessite une réflexion sur les concepts, sur la philosophie. Mais c’est terrible : la science s’est éloignée du reste de la vie intellectuelle, alors qu’elle n’avait pas du tout commencé ainsi. (…) Nous pouvons prouver, dans des cas simples, que l’organisation peut acquérir un sens et une vie bien à elle, et commencer à transcender les éléments dont elle est faite. « Le tout n’est pas la somme de ses parties » n’est pas seulement une idée, mais aussi un phénomène physique : voilà le message que nous adresse la science physique. La nature n’est pas uniquement régie par une règle fondamentale microscopique, mais aussi par de puissants principes généraux d’organisation. Si certains de ces principes sont connus, l’immense majorité ne l’est pas. (…) Les éléments fondamentaux de ce message sont formulés dans les très nombreux écrits d’Ilya Prigogine, et avec plus d’originalité encore, dans un célèbre essai de P.W. Anderson publié il y a plus de trente ans sous le titre « Plus signifie différent ». (…) Je suis de plus en plus persuadé que TOUTES les lois physiques que nous connaissons sont d’origine collective. La distinction entre lois fondamentales et lois qui en découlent est un mythe, de même que l’idée de maîtriser l’univers par les seules mathématiques. La loi physique ne peut pas être anticipée par la pensée pure, il faut la découvrir expérimentalement, car on ne parvient à contrôler la nature que lorsque la nature le permet, à travers un principe d’organisation. On pourrait baptiser cette thèse « la fin du réductionnisme » (réductionnisme = divisons en composantes de plus en plus petites et nous finirons forcément par comprendre). (…) Pour défendre ma position, il me faudra avancer franchement quelques idées choquantes : la matérialité du vide de l’espace-temps, l’hypothèse selon laquelle la relativité n’est pas fondamentale, la nature collective de la possibilité même du calcul informatique, les barrières épistémologiques du savoir théorique, les entraves du même ordre à la falsification de l’expérience, et le caractère mythologique d’importantes composantes de la physique théorique moderne. (…) Le monde est riche en régularités complexes et en relations de causalité quantifiables, et c’est grâce à elles que nous pouvons comprendre les phénomènes et exploiter la nature à nos propres fins. Mais la découverte de ces relations est regrettablement inattendue. (…) La thèse selon laquelle toutes les lois de la nature sont connues n’est qu’une composante de ce bluff. (…) La solution de la contradiction, c’est le phénomène de l’émergence. (…) L’émergence, c’est un principe d’organisation. Il est clair que les sociétés humaines, par exemple, ont des règles d’organisation qui dépassent l’individu. Une compagnie automobile ne va pas cesser d’exister si l’un de ses ingénieurs est écrasé par un camion. Mais le monde inanimé aussi a des règles d’organisation, et elles aussi expliquent beaucoup de choses qui sont importantes pour nous, dont la plupart des lois physiques de macroniveau dont nous nous servons dans notre vie quotidienne. Des réalités banales comme la cohésion de l’eau ou la rigidité de l’acier sont des exemples simples, mais il y en a bien d’autres, innombrables. (...) De même, l’aptitude de certains métaux à expulser totalement les champs magnétiques quand on les refroidit à température ultrabasse nous intéresse vivement parce que les atomes dont ils sont constitués ne peuvent pas le faire. (...) Puisque les principes d’organisation - ou plus exactement leurs conséquences - peuvent être des lois, celles-ci peuvent elles-mêmes s’organiser en lois nouvelles, et ces dernières en lois encore plus neuves, etc. Les lois du mouvement des électrons engendrent les lois de la thermodynamique et de la chimie, qui engendrent les lois de la rigidité et de la plasticité, qui engendrent les lois des sciences de l’ingénieur. (...) Seule l’expérience peut trancher entre des phénomènes qu’on croyait universels et ceux qui ne le sont pas. (...) Le tout petit groupe d’expériences qui sont d’une extrême exactitude a en physique, pour cette raison, une importance considérablement supérieure à sa taille. (...) Ces expériences très spéciales, il y en a dix ou vingt selon la façon dont on les compte, la plupart ne sont familières qu’aux experts. Il y a la vitesse de la lumière dans le vide, que l’on connaît à présent à une précision supérieure à un dix millième de milliardième. Il y a la constante de Rydberg, le nombre qui définit la quantification des longueurs d’onde de la lumière émise par les gaz atomiques dilués et responsables de la fiabilité stupéfiante des horloges atomiques : on la connaît au cent millième de milliardième près. Autre exemple : la constante de Josephson, le nombre qui indique le rapport entre la tension qu’on applique à un type précis de "sandwich" métallique et la fréquence des ondes radio qu’il émet : on la connaît à un degré d’exactitude d’un cent millionième. Ou encore la résistance de Von Klitzing, le nombre qui indique le rapport entre le courant électrique qu’on fait passer à travers un semi-conducteur de conception spéciale et la tension induite perpendiculairement au moyen d’un aimant : on la connaît à un degré d’exactitude d’un dix milliardième. Paradoxalement, l’existence de ces expériences très reproductibles nous inspire deux points de vue incompatibles sur ce qui est fondamental. Selon le premier cette exactitude nous fait toucher du doigt certains des éléments primitifs les plus simples dont est fait notre monde complexe et incertain. Nous disons que la vitesse de la lumière est constante parce qu’elle l’est vraiment et parce que la lumière n’est pas constituée de composants plus élémentaires. Avec ce mode de pensée, nous réduisons ces expériences précises à une poignée de constantes dites "fondamentales". L’autre point de vue, c’est que l’exactitude est un effet collectif qui se produit en raison de l’existence d’un principe d’organisation. Par exemple : le rapport entre la pression, le volume et la température d’un gaz comme l’air. Le nombre universel qui définit la loi des gaz parfaits est connu à une exactitude d’un millionième, mais d’énormes erreurs apparaissent quand on le mesure dans de trop petits échantillons de gaz et il cesse complètement d’être mesurable au niveau de quelques atomes. La raison de cette sensibilité à la taille, c’est que la température est une propriété statistique. L’exactitude collective est un concept que les non-scientifiques ont souvent du mal à comprendre, mais il n’est pas si difficile. On a de nombreux exemples familiers dans la vie quotidienne. Comme le comportement d’un gaz parfait, l’heure de pointe est une certitude collective. L’engorgement du trafic est un phénomène simple, fiable, qui naît de décisions complexes prises par un grand nombre d’individus qui vivent leur vie. Il n’est pas nécessaire de savoir ce qu’ils ont mangé au petit déjeuner, où ils travaillent combien ils ont d’enfants, comment ils s’appellent, etc, pour prévoir qu’à huit heures et quart, ça va être l’enfer. Un bel exemple d’effet collectif déguisé en en effet réductionniste est la quantification des spectres atomiques. La lumière est émise par des gaz atomiques dilués, avec des longueurs d’onde spéciales si insensibles aux influences extérieures qu’on peut s’en servir pour fabriquer des horloges précises au cent millième de milliardième. Mais ces longueurs d’onde ont un décalage détectable au dix millionième qui n’aurait pas dû exister dans un monde idéal ne contenant rien d’autre que l’atome. (…) Autrement dit, l’espace apparemment vide ne l’est pas du tout, il est plein de « quelque chose ». Le mouvement sympathique de ce « quelque chose » quand la matière passe change légèrement les propriétés de celle-ci, exactement de la même façon que le mouvement sympathique des électrons et des atomes dans une vitre de fenêtre modifie les propriétés de la lumière qui la traverse, et provoque sa réfraction. (…) Donc, même la constance du spectre atomique a en réalité des origines collectives – le phénomène collectif, en l’occurrence, étant l’effet de l’univers entier. Autre cas de « collectivisme », bien plus immédiat et troublant : la détermination de a charge de l’électron et de la constante de Planck par des mesures macroscopiques. La charge de l’électron est l’unité indivisible de l’électricité. La constante de Planck est la relation universelle entre le moment et la longueur qui définit la nature ondulatoire de la matière. Il s’agit de deux concepts résolument réductionnistes et, pour déterminer leur valeur, on recourt traditionnellement à de gigantesques machines (...). Or, il s’avère que la valeur la plus précise ne vient pas de ces machines, mais simplement d’une combinaison des constantes de Josephson et de Van Klitzing, dont la mesure n’exige rien de plus compliqué qu’un cryoréfrigérateur et un voltmètre. Cette découverte a été une immense surprise, car les échantillons sur lesquels on mesure les effets Josephson et Von Klitzing sont extrêmement imparfaits : ils regorgent d’impuretés chimiques, d’atomes déplacés et de structures atomiques complexes comme les frontières de grains et les morphologies de surface, autant de facteurs qui auraient dû perturber les mesures au niveau d’exactitude rapporté. Le fait même qu’ils ne le font pas PROUVE que de puissants principes d’organisation sont à l’œuvre. L’une des raisons pour lesquelles les physiciens parlent si rarement de la nature collective des mesures des constantes fondamentales, c’est qu’elle a des implications vraiment troublantes. En effet, puisque notre connaissance du monde physique repose sur la certitude expérimentale, il est logique d’associer la vérité la plus forte à la mesure la plus sûre. Il faut donc en conclure qu’un effet collectif est plus vrai que les règles microscopiques dont il serait censé dépendre… Dans le cas de la température, quantité qui n’a jamais eu de définition réductionniste (une seule molécule, un seul atome, une seule particule ou un trop petit nombre d’entre eux ne définit aucune température), cette conclusion est facile à comprendre et à accepter. (…) Mais, pour la charge de l’électron, c’est une autre affaire. Nous avons pris l’habitude de la penser comme un élément de base, un « cube de construction » de la nature, qui n’exigerait aucun contexte collectif pour avoir un sens. Les expériences en question réfutent cette affirmation, assurément. Elles révèlent que la charge de l’électron n’a de sens qu’au sein d’un contexte collectif : soit le vide de l’espace qui modifie cette charge de la même façon qu’il modifie les longueurs d’onde des atomes, soit une matière dont les propres effets préviennent ceux du vide. Ce rôle préventif de la matière signifie nécessairement que les principes organisationnels à l’œuvre sont les mêmes dans son cas et dans celui du vide, sinon les effets tiendraient du miracle. L’énigme de la charge de l’électron, en fait, n’est pas unique. TOUTES les constantes fondamentales exigent un contexte environnemental pour faire sens. Dans la pratique, la distinction entre quantités réductionnistes et quantités « émergentistes » en physique n’existe pas. (…) La loi physique universelle est l’iceberg dont la constante physique est la pointe émergée. (…) Comme pour les mesures universelles exactes nous avons tendance à distinguer lois d’origine microscopique et lois d’origine collective, tout en les qualifiant de « fondamentales » dans les deux cas. Et, comme pour les constantes, la différence entre ces deux catégories s’évanouit lorsqu’on regarde les expériences de près. Au fil des ans, tandis que s’allongeaient la liste des succès des lois de Newton, on a commencé à en faire un usage spéculatif. (…) Exemple : la théorie cinétique des gaz postule que le gaz est composé d’atomes qui obéissent aux lois de Newton, avec des forces répulsives à faible portée qui les amènent à se caramboler les uns les autres comme des boules de billard. Elle calcule alors que ces atomes mythiques ont une forte tendance à être enchevêtrés par leurs collisions dans des dispositions aléatoires. (…) Mais ce raisonnement a un vice évident : le comportement qui sert à mettre à l’épreuve l’hypothèse est peut-être un phénomène collectif universel. Si c’est le cas, la mesure est fondamentalement insensible aux suppositions microscopiques, telle l’existence des atomes, et ne peut donc absolument pas les vérifier. (…) Les lois de Newton, en fait, sont fausses à l’échelle des atomes. Au début du vingtième siècle, on a découvert que les atomes, les molécules et les particules subatomiques sont décrits par les lois de la mécanique quantique – règles si différentes de celles de Newton que les scientifiques ont dû faire de gros efforts pour trouver les mots susceptibles de les formuler convenablement. (…) Donc il s’avère que les légendaires lois de Newton sont émergentes. Elles n’ont rien de fondamental, mais résultent de l’agrégation de la matière quantique en fluides et en solides macroscopiques – un phénomène organisationnel collectif. (…) J’ai été éclairé pour la première fois sur la nature émergente des lois de Newton en lisant le célèbre article de P.W. Anderson « More is different » (Plus, c’est autre chose). Anderson avait compris (…) que le comportement supraconducteur nous révèle, par son exactitude, que la réalité quotidienne est un phénomène d’organisation collective. Les états de la matière – dont les plus connus sont le liquide, le gazeux et le solide – dont des phénomènes organisationnels. Beaucoup sont surpris de l’apprendre puisqu’ils paraissent si fondamentaux et familiers, mais c’est la pure vérité. (…) Si l’organisation d’un solide cristallin – l’arrangement ordonné des atomes en réseau – faisait faux bond, la rigidité s’évanouirait, car sous cette structure il n’y a aucun actif physique. (…) Paradoxalement, l’extrême fiabilité des phénomènes liés aux états de la matière fait d’eux le pire cauchemar des réductionnistes (…). Un phénomène exact tel que la rigidité ne peut pas du tout dépendre des détails. De plus, si certains aspects des états de la matière sont universels, donc faciles à prévoir, d’autres, comme l’état que l’on a dans telles ou telles conditions, ne le sont pas. L’eau est un cas particulièrement embarrassant. La glace de l’eau ordinaire présente, au dernier décompte (le nombre continue d’augmenter avec les nouvelles découvertes), onze états cristallins distincts, dont aucun n’a été correctement prédit à partir des principes premiers. (…) Les états sont un cas d’émergence élémentaire et bien étudié, qui démontre de façon convaincante que la nature a des murs d’échelle : les règles microscopiques peuvent être parfaitement vraies mais sans aucune pertinence pour les phénomènes macroscopiques car ce que nous mesurons leur est insensible ou au contraire trop sensible. Bizarrement, c’est parfois les deux à la fois. Par exemple, il est actuellement trop difficile de calculer à partir de rien quel état cristallin de la glace va se former à une température et sous une pression données, mais il n’y a aucun besoin de calculer les propriétés macroscopiques d’un état donné, parce qu’elle sont entièrement génériques. (…) Il y a quantité d’autres exemples quotidiens de l’exactitude créée par les états. (…) L’exemple le plus simple d’exactitude émergente est la régularité des réseaux cristallins, l’effet qui, en dernière analyse, assure la rigidité des solides. L’ordre atomique des cristaux peut être parfait à des échelles d’une longueur époustouflante - dans de très bons échantillons, jusqu’à cent millions d’espacement interatomiques. (…) L’aspect le plus stupéfiant du réseau cristallin, c’est qu’il reste exact quand la température monte. (…) Même dans de bons cristaux, chaque atome est toujours en train de bouger , donc toujours légèrement décalé par rapport à son emplacement idéal dans le réseau à quelque moment qu’on l’observe – c’est la signification physique de la chaleur. La preuve que ce mouvement existe, c’est qu’une fraction des rayons X diffusés sur un échantillon est renvoyée avec un léger changement de longueur d’onde (…). Mais, surprise, cet effet ne brouille pas les angles de déviation précis des rayons X. (…) C’est que la localisation d’un atome continue de prédire la localisation d’un autre – avec un peu d’incertitude – arbitrairement loin dans la structure. Les erreurs de position ne s’accumulent pas. (…) Les positions de réseau d’un solide ont manifestement un sens exact même quand les atomes ne s’y trouvent pas exactement. L’exactitude du « registre » du réseau sur longue distance explique la soudaineté de la fonte. L’aptitude d’un atome à prédire la position d’un autre arbitrairement loin ne peut pas être partielle, pas plus qu’une femme ne peut être partiellement enceinte. Quand cette prédictibilité est là, la simple logique nous dit que les autres propriétés qu’on associé normalement aux solides, telles la forme et l’élasticité, doivent l’être aussi. Elles ne peuvent donc être perdues que sur le mode de la « catastrophe ». Il y a malheureusement, des malentendus constants quant à l’importance de cette exactitude dans la nature de l’état solide. La plupart des substances ne sont pas parfaitement régulières – même les métaux réels, qui doivent à des imperfections structurelles et chimiques nombre de leurs propriétés utiles à l’ingénieur. (…) Une fois que l’on sait ce qu’il faut chercher, il devient facile de démontrer la nature organisationnelle d’états autres que le solide. On repère sans ambiguïté un état collectif de la matière lorsqu’un ou plusieurs comportements sont exacts dans un vaste agrégat mais inexacts, ou inexistants, dans un petit. Puisque le comportement est exact, il ne peut pas changer progressivement lorsqu’on fait varier des conditions extérieures comme la pression ou la température : il ne peut changer qu’abruptement, dans une transition d’état. Une signature claire et nette du phénomène organisationnel, c’est donc une transition d’état brutale. Mais la transition elle-même n’est qu’un symptôme. L’important n’est pas la transition, c’est l’exactitude émergente qui la nécessite. Les transitions de la glace, fonte et sublimation, signalent la destruction de l’ordre cristallin et son remplacement par un autre ensemble de comportements exacts collectivement baptisé « hydrodynamique ». (…) Comme les lois de la rigidité dans les solides, celles de l’hydrodynamique deviennent toujours plus exactes quand on les mesure à une plus grande échelle de longueur et de temps, et s’évanouissent à la limite opposée.Un examen attentif révèle que le nombre d’atomes est nécessairement trop grand, car le dispositif ne fonctionnerait pas s’il était petit. Détecter la désintégration radioactive d’un atome au moyen d’un autre atome, par exemple, n’a pas de sens, puisque cela reviendrait à substituer un minuscule objet non mesurable à un autre. (…) Il y a quelque chose dans le concept humain de mesure qui exige que l’appareil soit grand. (…) Tous les détecteurs quantiques sont faits de solides, donc tous exploitent cette caractéristique de l’état solide qu’est la brisure de symétrie, effet qui ne se produit que dans la limite de la grande dimension. Une observation, pour se qualifier comme telle selon la définition humaine traditionnelle, ne doit pas modifiée par l’acte d’observer. (…) Von Klitzing a découvert quelque chose qui n’aurait pas dû exister – ce qui nous rappelle brutalement que notre compréhension du monde st limitée, que nos préjugés ne sont pas des lois (…) – une mesure qui devenait anormalement stable sur toute une gamme d’intensités du champ magnétique. (…) La découverte de cette constance inattendue, personne ne l’avait prédite. (…) Lorsqu’on approche un aimant d’un fil électrique où passe un courant, une tension perpendiculaire à la direction du courant apparaît. Elle fait parce que les électrons qui passent dans le conducteur sont déviés par l’aimant, exactement comme ils le seraient à l’air libre. Ils s’accumulent donc d’un seul côté du fil, jusqu’au moment où la tension de réaction qu’ils génèrent équilibre exactement la déviation magnétique. On appelle ce phénomène l’effet Hall. (…) Aux températures ordinaires, (…) le rapport entre la résistance de Hall et la densité est en ligne droite. Mais à des températures très basses, ce n’est plus une ligne droite mais une ligne qui frétille. Dans le cas du type particulier de semi-conducteurs qu’étudiait Von Klitzing – des transistors à effet de champ, ces frétillements se muent en un escalier aux marches extrêmement aplaties quand on baisse la température. (…) Von Klitzing a pris conscience du fait que la valeur de la résistance de Hall était une combinaison de constantes fondamentales – la valeur indivisible de la charge électrique e, la constante de Planck h et la vitesse de la lumière c, autant d’éléments que nous concevons comme les composantes de base de l’univers. (…) Nous savions tous que les échantillons de Von Klitzing étaient imparfaits, donc nous nous attendions à des variations. Lorsqu’on fabrique des semi-conducteurs, il y a toujours des différences incontrôlables – défauts structurels du réseau cristallin, dopants incorporés de façon aléatoire, oxydes amorphes à la surface, bords irréguliers laissés par la lithographie optique, petits bouts de métal éparpillés sur la surface par des fers à souder déficients quand on fixe les fils électriques, etc. (…) L’effet Hall quantique, en fait, est un magnifique exemple de perfection émergeant de l’imperfection. L’indice crucial qui le montre, c’est que l’exactitude de la quantification – c’est-à-dire l’effet lui-même – disparaît si l’échantillon est trop réduit. Les phénomènes collectifs sont courants dans la nature et occupent aussi une place centrale dans la physique moderne, donc, de ce point de vue, ce qui se passe ici n’est ni sans précédent ni difficile à comprendre. Mais l’exactitude extrême de l’effet de von Klitzing rend sa nature collective incontestable, et son importance particulière est là. (…) Si l’effet Hall quantique a levé le rideau sur l’ère de l’émergence, la découverte de l’effet Hall quantique fractionnaire a été l’ouverture de l’opéra. (…) Dan Tsui et Horst Strömer l’ont découvert par accident en cherchant des preuves de cristallisation de l’électron. (…) L’effet Hall quantique fractionnaire révèle que des quanta apparemment invisibles – en l’occurrence la charge de l’électron e – peuvent être fragmentés dans le cadre de l’auto-organisation d’états. Autrement dit, les éléments fondamentaux ne sont pas nécessairement fondamentaux. (…) L’observation des plateaux très précisément quantifiés de l’effet Hall quantique fractionnaire prouvait l’existence de nouveaux états de la matière où des excitations élémentaires – des particules – étaient porteuses d’une fraction exacte de e. (…) La grande question que pose implicitement la découvert de Von Klitzing n’est pas : « La loi physique existe-t-elle ? » mais « Qu’est-ce que la loi physique, d’où vient-elle et quels sont ses effets ? » Du point de vue réductionniste, la loi physique est l’impulsion causale de l’univers, elle vient de nulle part et tout est son effet. Du point de vue émergentiste, la loi physique est une règle de comportement collectif, elle est une conséquence de règles de comportement plus primitives à l’étage en dessous (…). La vraie physique est toujours inductive, aucun phénomène organisationnel collectif – même aussi élémentaire que la cristallisation et le magnétisme – n’a jamais été déduit (…). La constance des effets Meissner et Josephson en est une preuve expérimentale : un principe d’organisation est à l’œuvre dans les supraconducteurs, celui que nous assimilons aujourd’hui à la multiplicité de Schrieffer et que nous appelons la « brisure de symétrie du superfluide ». (…) Le combat sur la théorie de la supraconductivité a été l’un des plus longs et des plus âpres de l’histoire de la science, essentiellement parce que le problème central était conceptuel. (…) C’est triste à dire, mais la machinerie de la science n’est pas conçue pour traiter les concepts, mais seulement les faits et les technologies. »

Le point de vue de Gilles Cohen-Tannoudji, dans « Le boson et le chapeau mexicain » :

« Une remise en cause très importante, impliquée par la mécanique quantique, concerne, selon Bohr, le concept de « phénomène ». Dans la science et dans la philosophie classique, le terme de phénomène tend à désigner un objet ou un processus, relativement stable et indépendant des conditions selon lesquelles il est observé. Or, il semble impossible, en mécanique quantique, de séparer nettement l’objet de l’appareil de mesure. L’idée essentielle de Bohr est de redéfinir le concept même de phénomène… Avec cette nouvelle définition du concept de phénomène présente à l’esprit… les concepts ne sont pas relatifs à l’ « objet » mais seulement à des « phénomènes ». Cela ne veut absolument pas dire, comme de nombreux auteurs l’ont cru ou ont voulu le croire, que la mécanique quantique renoncerait à l’idéal d’objectivité fondateur de toute démarche scientifique… Citons Louis de Broglie : « D’après Bohr, les images d’onde et de grain sont complémentaires en ce sens que, bien que ces images se contredisent, elles sont l’une et l’autre nécessaires pour rendre compte de l’ensemble des aspects sous lesquels peuvent se présenter à nous les particules élémentaires. Suivant les circonstances expérimentales, c’est l’une ou l’autre des deux aspects qui prédomine et ce qui permet à ces deux images contradictoires de nous servir tout à tour sans jamais entrer en conflit, c’est que chacune s’estompe quand l’autre se précise. C’est là le sens profond des inégalités d’incertitude d’Heisenberg. » (…) La théorie quantique a triomphé… Cette affirmation ne signifie pas que la théorie quantique ne continue pas à susciter de grandes interrogations concernant sa signification profonde, ni qu’il ait été répondu de façon satisfaisante aux sévères objections en particulier soulevées par Einstein… ni que le cadre fourni par la mécanique quantique soit suffisant… Il va nous falloir dépasser la mécanique quantique dans une théorie quantique des champs… Avec l’interprétation de Copenhague, la physique quantique n’a jamais été mise en défaut en quatre-vingt ans de confrontation avec l’expérience. Mais cette interprétation est limitée aux règles d’utilisation du formalisme quantique dans les expériences faites en laboratoire. Elle semble faire jouer à la physique classique un rôle nécessaire au fondement même de la physique quantique : elle paraît impliquer l’existence d’observateurs appartenant à un « monde classique » séparé du « monde quantique » auquel appartient le système à l’étude… L’interprétation moderne de la physique quantique, développée entre autres par Gell-Mann et Hartle, permet de lever cette difficulté à l’aide du concept d’histoires décohérentes…. On a pu réaliser des expériences ultra précises, comme celles qui ont valu le prix Nobel 2012 à Serge Haroche et David Wineland, montrant que la décohérence est un authentique processus physique… Tous les progrès accomplis grâce à la mécanique quantique montrent que la prudence dont avait fait preuve l’interprétation de Copenhague n’est donc plus de mise à l’heure actuelle, et d’ailleurs l’interprétation de la théorie quantique a été, comme nous le verrons plus loin, profondément renouvelée dans un sens plus ambitieux, sans que ses principes fondamentaux n’aient été invalidés. La théorie quantique a triomphé et plus personne ne conteste qu’aucune théorie ne pourra rendre compte de la réalité physique si elle n’en intègre pas les acquis. Cette affirmation ne signifie pas que la théorie quantique ne continue pas à susciter de grandes interrogations concernant sa signification profonde, ni qu’il ait été répondu de façon satisfaisante aux sévères objections, en particulier soulevées par Einstein (le paradoxe EPR). »

Le point de vue de Edgar Gunzig dans « Histoire de l’histoire des origines » (article de l’ouvrage collectif « L’homme devant l’incertain » dirigé par Ilya Prigogine) :

« C’est la théorie quantique des champs, lien naturel des phénomènes de création et d’annihilation de la matière, qui offre le cadre évident qui, enrichissa nt celui de la relativité générale, peut lui apporter ce qui lui fait si cruellement défaut dans sa description de la cosmogenèse. Mais en quoi don le comportement d’un champ matériel quantique, considéré dans le contexte cosmologique, se différencie-t-il de celui du fluide classique, au point de métamorphoser l’évolution cosmologique ? Le fluide cosmologique classique, lui, ne peut que s’étendre et se diluer, en accompagnant l’expansion de l’espace-temps. C’est la dilution classique d’un nombre invariable de particules dans un volume qui s’agrandit. Le champ quantique, par contre, devient l’acteur d’un phénomène extraordinaire : l’expansion de l’espace-temps induit la création des particules matérielles associées à ce champ. Dans le cadre de la théorie quantique des champs, les particules expriment les excitations quantiques du champ, et le champ quantique est excité quantiquement par l’expansion de l’espace-temps dans lequel il est plongé. Cette expansion du substrat géométrique produit sur le champ quantique un effet analogue à celui que produirait une source d’énergie extérieure : elle le force à produire quantiquement de la matière. L’espace-temps produit ainsi en s’étendant son propre fluide cosmologique ! Dans son expansion, la géométrie fournit ainsi au champ quantique l’énergie qui est la source de ses excitations quantiques : les particules. En d’autres mots, c’est l’énergie libérée par l’expansion géométrique que le champ absorbe pour produire ses particules. Tout se passe comme si la géométrie de l’espace-temps représentait un réservoir d’énergie interne que l’expansion permettait d’actualiser et de mettre en communication avec le champ qu’elle excite… Si le vide quantique est effectivement dépourvu de particule et ressemble en cela au vide intuitif de la théorie classique, il est néanmoins le siège d’une fébrilité inconnue en théorie classique. Le vide quantique ne représente en effet pas l’absence de matière mais, bien au contraire, un état particulier de celle-ci, celui d’énergie minimale. Si les particules sont bien les entités fondamentales de la théorie physique classique (et de la mécanique quantique non-relativiste) et, à ce titre, permanentes et inamovibles, les champs quantiques, eux, sont les entités ontologiques de la théorie quantique des champs, et ce sont eux qui sont inexpurgeables. On ne peut les éliminer et le vide quantique ne correspond qu’à leur configuration quantique la plus figée compatible avec les exigences du formalisme quantique : c’est leur état d’énergie minimale dépourvu de particules réelles, mais siège d’une mouvance et d’une activité irréductible par principe… Créer des particules à partir de ce vide, c’est exciter suffisamment ces fluctuations pour qu’elles ne se réannihilent pas, qu’elles ne retombent pas à zéro, et puissent alors transporter réellement de manière durable l’équivalent énergétique de la masse des particules produites… C’est ici que se manifeste dans toute sa richesse la non-linéarité des équations d’Einstein et les effets de rétroaction qui en résultent : la matière qui est créée, en réponse à l’expansion de l’espace-temps, doit en retour moduler cette expansion selon les équations d’Einstein. En d’autres termes, l’ampleur de cette expansion détermine le taux de cette création et cette expansion est alors conditionnée, en retour, par cette matière produite… qui conditionne donc en retour sa propre production… le vide de l’espace-temps renferme en lui-même son propre réservoir énergétique qui lui permet de s’auto-alimenter, sans recourir à un monde extérieur inexistant. Il est énergétiquement autosuffisant parce qu’il peut puiser de l’énergie en lui-même. Voilà comment l’espace-temps peut créer, engendrer, en se dilatant, son propre contenu ! »

La renaissance du temps de Lee Smolin

Le point de vue de Laughlin

Le point de vue de Lee Smolin

Le point de vue d’Alain Aspect

Quelques pistes des possibles révolutions de la Physique

Une hypothèse sur l’origine quantique virtuelle de la gravitation entre particules

The life of cosmos, Lee Smolin

Singular universe and the reality of time, Lee Smolin

Three roads to quantum gravity, Lee Smolin

The trouble with Physics, Lee Smolin

Le point de vue de Cohen-Tannoudji

A different universe, Robert Laughlin

Virtualité et réalité dans les sciences, Gilles Cohen-Tannoudji

Photons et atomes, Gilles Cohen-Tannoudji

Processus d’interaction entre photons et atomes, Gilles Cohen-Tannoudji

Causalité et finalité, Gilles Cohen-Tannoudji

The Modern Revolution in Physics

New Developments on Fundamental Problems in Quantum Physics

Demain la physique

Théorie quantique des champs

La physique quantique

La physique au XXe siècle

Une conférence d’Alain Aspect, le film

Cohen-Tannoudji, le film La révolution quantique

Quelle limite de la connaissance pose la physique quantique, le film

Physique quantique et décohérence par Serge Haroche, le film

Conférences de Cohen-Tannoudji

La révolution quantique ne fait que de commencer

Et si le virtuel du vide quantique était la réalité de la matière ?

Les révolutions passées de la physique

Quantum Gravity, Carlo Rovelli

Au cœur de la matière, Maurice Jacob

Comment Lee Smolin montre que le temps physique est la clef de la nouvelle révolution indispensable à la Physique moderne

En voici un court extrait :

Thomasina, héroïne de la pièce de Tom Stoppard, « Arcadia », explique à son tuteur : « Si tu pouvais immobiliser chaque atome dans sa position et direction, et si ton esprit pouvait appréhender toutes les actions ainsi suspendues, puis si tu étais vraiment très, très doué en algébre, tu pourrais écrire la formule pour la totalité du futur ; et bien qu’il n’y ait personne d’assez intelligent pour pouvoir réaliser ça, la formule doit exister comme si quelqu’un le pouvait. »

J’avais coutume de penser que mon boulot de physicien théoricien était de trouver cette formule ; je conçois aujourd’hui cette foi en son existence comme du mysticisme plus que comme de la science.

Eut-il écrit pour un personnage moderne, Stoppard aurait fait dire à Thomasina que l’univers est pareil à un ordinateur. Les lois de la physique sont le programme. Quand vous entrez une donnée – les positions à l’instant présent de toutes les particules élémentaires dans l’univers – l’ordinateur mouline pendant une durée appropriée et vous pond le résultat, qui est l’ensemble des positions des particules éléementaires à un instant futur.

Dans cette vision de la nature, rien ne se produit hors du réarrangement des particules selon des lois éternelles. Donc, d’après ces lois, le futur est déjà complètement déterminé par le présent et le présent par le passé.

Cette vision minimise le rôle du temps de plusieurs façons. Il ne peut y avoir aucune surprise, aucun phénomène vraiment nouveau, parce que tout ce qui survient n’est que réarrangement d’atomes. Les propriétés des atomes eux-mêmes sont éternelles, tout comme les lois qui les gouvernent ; elles ne changent pas. Toute propriété du monde à venir est calculable à partir de la configuration du présent. Autrement dit, on peut substituer à l’écoulement du temps un simple calcul, ce qui signifie que le futur est logiquement enfanté par le présent. (…)

Il s’ensuit du grand principe de Leibniz qu’il ne peut pas exister de temps absolu qui fasse tic tac aveuglément quoiqu’il arrive dans le monde. Le temps doit être une conséquence du changement ; sans altération dans le monde, il ne peut y avoir de temps. Les philosophes disent que le temps est relationnel – il est un aspect des relations, par exemple la causalité, qui gouvernent le changement. Similairement, l’espace doit être relationnel ; en effet, chaque propriété d’un objet dans la nature doit être un reflet des relations dynamiques entre lui et d’autres objets dans le monde. (…)

Chercher à unifier la physique et, particulièrement, à rassembler la théorie quantique et la relativité au sein d’un unique cadre revient principalement à achever la révolution relationnelle en physique. Le principal message de ce livre est que cela passe par l’adoption des idées que le temps est réel et que les lois évoluent.

(…)

La réalité du temps permet une nouvelle formulation de la théorie quantique qui peut aussi nous éclairer sur la façon qu’ont les lois d’évoluer avec le temps….

Einstein mit en lumière il y a longtemps que la mécanique quantique est incomplète parce qu’elle échoue à donner une description de ce qui se passe dans une expérience individuelle. Que fait au juste l’électron lorsqu’il saute d’un état d’énergie à un autre ? Comment des particules trop éloignées l’une de l’autre parviennent-elles à communiquer instantanément ? Comment semblent-elles apparaître en deux endroits à la fois ? La mécanique quantique ne fournit pas de réponse…

La mécanique quantique est une théorie problématique pour trois raisons étroitement liées. La première est son échec à donner une image physique de ce qui se passe dans un processus ou une éxpérience individuels : contrairement aux théories physiques précédentes, le formalisme que nous utilisons en mécanique quantique ne peut pas être lu comme nous montrant ce qui se passe à chaque instant. Deuxièmement, dans la plupart des cas elle échoue à prédire le résultat précis d’une expérience ; plutôt que de nous dire ce qui va se passer, elle ne nouus donne que des probabilités pour les différentes choses susceptibles de se produire. La troisième et plus problématique caractéristique de la mécanique quantique est que les notions de mesure, d’observation ou d’information sont nécessaires pour exprimer la théorie. Elles peuvent être vues comme des notions primitives ; elles ne peuvent pas être expliquées en termes de processus quantiques fondamentaux…

Si vous voulez décrire complètement un système en physique classique, vous répondez à toutes les questions, et ceci vous donne toutes les propriétés. Mais en physique quantique, le dispositif dont vous avez besoin pour poser une question peut vous empêcher de répondre aux autres questions. Par exemple, vous pouvez demander ce qu’est la position d’une particule, ou vous pouvez demander ce qu’est le moment, mais vous ne pouvez pas poser ces deux questions à la fois. C’est ce que Niels Bohr a appelé la complémentarité, et c’est aussi ce que les physiciens signifient lorsqu’ils parlent de « variables non-commutatives »…

En embrassant la réalité du temps, nous ouvrons un chemin pour comprendre la théorie quantique qui éclaire ses mystères et pourrait bien les résoudre. Je crois que la réalité du temps rend possible une nouvelle formulation de la mécanique quantique…

Nous sommes habitués à l’idée de lois intemporelles de la nature agissant à l’intérieur du temps, et nous ne trouvons plus cela étrange. Mais prenez suffisamment de recul, et vous verrez que cela repose sur de grandes suppositions métaphysiques qui sont loin d’être évidentes…

Il est une tradition – commençant avec Niels Bohr – d’affirmer que l’échec de la théorie quantique à donner une image de ce qui se passe au cours d’une expérience individuelle est l’une de ses vertus et non pas un défaut. Bohr a argumenté avec talent que le but de la physique n’est pas de fournir une telle image mais plutôt de créer un langage grâce auquel nous pouvons parler entre nous de notre préparation des expériences sur des systèmes atomiques et de ce que les résultats nous ont donné. Je trouve les écrits de Bohr fascinants mais peu convaincants. Je ressens la même chose à propos de certains théoriciens contemporains, qui disent que la mécanique quantique ne porte pas « sur » le monde physique, mais sur l’ « information » que nous avons sur le monde physique. Ces théoriciens avancent que l’état quantique ne correspond à aucune réalité physique ; il ne fait que coder l’information que nous, observateurs, avons sur un système… Après tout, quelque chose se passe lors d’une expérience individuelle. Quelque chose, et seulement ce quelque chose, est la réalité que nous dénommons électron ou photon. Ne devrions-nous pas être capables de saisir l’essence de l’électron individuel dans un langage conceptuel et un cadre mathématique ? … Alors je me range aux côtés d’Einstein. Je crois qu’il existe une réalité physique objective et que quelque chose qu’on peut décrire se produit quand un électron saute d’un état d’énergie dans un autre. Et je cherche une théorie qui en donne cette description.

Lire aussi :

Einstein aujourd’hui

Bref récit du futur

La fonction d’onde serait un objet physique réel

Vers une nouvelle cosmologie

Et si le temps n’existait pas

Nous, la particule et le monde

Une révolution conceptuelle

La physique du XXIe siècle

8 Messages de forum

Répondre à cet article

SPIP | squelette | | Plan du site | Suivre la vie du site RSS 2.0